ADAPTIVE FILTERING

e Configurations and applications

e Steepest descent method

e Least mean squares (LMS)

e Recursive least squares (RLS)
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ADAPTIVE FILTER CONFIGURATIONS
AND APPLICATIONS

e System identification

e System equalization

e Linear prediction

e Noise cancelation
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SYSTEM IDENTIFICATION
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SYSTEM EQUALIZATION
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LINEAR PREDICTION
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Linear Predictive Coding: output is s[n]
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NOISE (INTERFERENCE) CONCELATION

Signal + Noise d(n)zs[n]+n[n]
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WIENER FILTER REVIEW

hln] = {

FIR
] > Filter
0O otherwise
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WIENER FILTERING EQUATIONS

WIENER-HOPF EQUATION

Raxwo =140

Re = E{z[n]a""[n]] rgg = E{d[n]z*[n]}

MEAN-SQUARE ERROR

= Ry[0] -~ w§' Tyg eo[n] = d[n] — woZ[n]
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SOLUTION BY ITERATION

ERROR EQUATION
o2(w) = E{leln]?} = E{(d[n] — w'E[n])(d[n] — w'&[n])*}]

—  o2(w) = Ry[0] - wF iy — TiLbw + W Rgw

ERROR SURFACE o2 (W)
€

W,
\d
WO
Wo
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SOLUTION BY ITERATION (cont’d.)

ERROR EQUATION

o2(w) = Ry[0] — w*F 0 — Flw + w T Rgw

METHOD OF STEEPEST DESCENT
VW*O'&? = —TI4x + Rxw

wln + 1] = wln] — pVy=o2

win + 1] = win] 4+ p(Tge — Rzw(n])
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SOLUTION BY ITERATION (cont’d.)
- AN ALTERNATIVE EXPRESSION

MEAN-SQUARE ERROR

o2 (w) = E{[e[n]*} = E{e[n](d[n] — w'&[n])*}

GRADIENT V.02 = —E {e[n]z*[n]}

EQUATION OF STEEPEST DESCENT

w(n + 1] = w[n] + pE{e[n]Z"[n]}
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PERFORMANCE ANALYSIS

Rewrite equation:

win + 1] = wln] + p(Tge — Rxw(n])

as

uln—+ 1] = I — pRz)uln] where u[n] = w[n] — wo

This implies
u[n] = (I - pRag) " u[0]
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SOME ALGEBRAIC STEPS

Ry

(I - pRe)" =

EAE*
B

= E

el ez « o o

ep

E(T — uA)"ET

(1 — pA)”
(1 — pAn)"

(1 —puAp)™
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CONDITION FOR CONVERGENCE

uln] = (I-pRz)"ul0] =E{~ pA)"E™u[0]

(1 — )"

0

(1 — pA)"

(1 —puAp)™

This converges if and only if |1 — uX;| < 1 for all ¢, or

(Amax is the largest eigenvalue of Rg)

O< <

anwax

E*Tu[0]
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MODES OF CONVERGENCE

“Modes"” v;[n] are represented by a coordinant transformation:

v[n] = B u[n] = E*T(w[n] — wo)

w, A
V2
Vi
v1[n] —— el —
X\ - valn] | _ | —— e5" —-
i - : sT
L vpln] | | —— ep —— |
WO
> W,

u[n]
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MODAL EXPRESSION FOR WEIGHTS
Time dependence of ith mode: v;[n] = (1 — pu);)"v;[0]

Combine this with the following relations:
w[n] = wo + u[n]

| | [ |
uln] =Ev[n] = | ey |vi[n]+ | ex |va[n]+ -+ | ep | vp[n]

to obtain:

P
wln] = wo + ) e;u;[0](1 — puX)"
i=1
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CONVERGENCE TIME FOR MODES

REGIONS OF CONVERGENCE

1 2

A, A,

| — u
o /. \. J

N N Oé@':]-_/l)\i
O<a, <1 —l<a, <0

Overdamped Critically Underdamped
Damped (Oscillatory)

Time constant 7; of the ith mode is defined by

. 1
‘]_ — “)"i Ti — e_l p—— T; =
—In ‘1 —,UJ)\Z'|
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CONVERGENCE TIME FOR WEIGHTS

LARGEST TIME CONSTANT
1 1
<

™wW — ~
—In(1 — pAmin) — #Amin
Write p as
2
w=p O<p<l1
Amax
then

1 /)
o < < max>
2p \ Amin

Amax/Amin IS the condition number x of the correlation matrix.
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CONVERGENCE OF MEAN-SQUARE ERROR

P
o2[n] = o2+ Xi(1—pA)?"|v;[0] |2
i=1

> W,
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LEARNING CURVE (MEAN-SQUARE ERROR)

1 1
<
—2In(1 — uAmin) ~ 26 Amin

Tmse <
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LEAST MEAN SQUARES (LMS) ALGORITHM

EQUATION OF STEEPEST DESCENT

wn + 1] = w[n] 4+ pE {e[n]Z*[n]}

LMS ALGORITHM

eln] = dn] —w'[n]Z[n] (a)
wln+ 1] = win] + peln]z*[n] (b)
2 2 2

(] < < = =
Sy Ry tap input power PR;[0]
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LMS CONVERGENCE

CONVERGENCE OF THE MEAN

nli_)moof{e[n]} = €00 and nli_)moof{w[n]} = Woo

CONVERGENCE IN MEAN-SQUARE

lim z{\g[n]\Q} = o2

n—oo

MISADJUSTMENT
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DISCUSSION OF LMS

e Most widely used adaptive algorithm

e Low computational requirements: O(P)

e Nonlinear and time-varying algorithm;
extremely difficult to analyze

e Steepest descent method provides guidelines for LMS
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LMS VARIATIONS

o Leaky LMS

e Normalized LMS

e Sign algorithms

e Quasi-Newton methods
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LEAKY LMS

win + 1] = (1 — pa)w(n] + pe[n]E*[n]

2

o IS a small positive number; O< <
@ + Amax

e Mitigates nonconverging modes

e introduces additional error bias
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NORMALIZED LMS

/
1% ~ %
wln+ 1] = wn] + — e[n]x*[n]
e + |Z[n]|?
e is a small positive number; 0<y <2

e USes normalized step size parameter

e climinates need to estimate upper bound on u
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SIGN ALGORITHMS

w(n 4 1] = wln] + psgn{e[n]} Z[n]

w[n + 1] = w[n] + psgn {e[n]} sgn {x[n]}

e computationally simplest

e may have slow convergence and/or stability problems
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QUASI-NEWTON ALGORITHMS

wln + 1] = w[n] + pe[n]Rg & [n]

A

jol IS an approximation to the true inverse
e Speeds convergence by use of second order terms
e Wwhitens the input

e increased computation: O(P?)
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LMS FOR LATTICES (LINEAR PREDICTION)

e Minimize combined criterion

Jp = E{lepln]|? + |eb[n]]?}

e Direction of steepest descent is
—V,Y;Jp = E{&:g_l[n — 1lg,[n] + 62[%]6‘;_1[n]}

e Requires double recursion: in order as well as time
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GRADIENT ADAPTIVE LATTICE (GAL)
ALGORITHM

e Minimizes weighted sum of errors (0 < 3< 1)

53l = BSJ’In — 11 + (1 = B) |leplnl | + |epln — 1]/7]

1. Start with ep[~1] = eb[-1] = 0, 3p[-1] =0, and S} [-1] = ¢
(a small number) for all orders p < P.

2. Forn=0,1,2,...
(a) Set gg[n] = sg[n] = x[n].
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(b) Forp=1,2,...,P compute:

epln] = ep_1ln] — ypeb_qln— 1]
epln] = ep_1ln— 1] —pep_1ln]
Sl = BSIn— 114+ (1 = B) |lepln]* + [ehn — 1]17]

~

I

Spff 1 [n]

O<pn<O0.1

=

i

=8
|

wlnl = wln — 10+ ppln] | _1[n — 1epln] + eblnles_1[n]]



“JOINT PROCESS” ESTIMATION

/

e Add step: vp[n+ 1] = vp[n] +Sf+6[n]eg*[n] p=20,1,...,P
n



RECURSIVE LEAST SQUARES FILTERING

e \Weighted least squares

e The RLS algorithm
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LEAST SQUARES FILTERING (REVIEW)

Desired sequence

d[2]

diy
atiiig 5 o
I I I Error
Observed data Estimate
210)7L! ]T[z] a ]rilzl
I { o] [ ] . ]__
z[n] d[n
AT — T
| wIP1... wl1] wio] | -

FIR Filter
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WEIGHTED LEAST SQUARES

Minimize:
Sgln] =Y gl 0<pB<1L
i=n[
= €[n]" B[n]e[n]
where
| e[ng]
elny + 1] C g Q9 .. 0]
efn] = | Bln] = O AR
0 0 1
| e[n]
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WEIGHTED LEAST SQUARES SOLUTION

R[n]w[n] = r[n] — w[n] = R~ 1[n]r[n]
R[n] = X*!'[n]B[n]X[n]; r[n] = X*[n]B[n]d[n]
- X[ng] X[ny—1] -+ X[ny— P+1] | - d[n;]
X[nr+1] X[ng] - %[NI—P—FQ] fj[nrl—l]
X[n]=|" : : d[n]=| °
] X[n] ;<[n—1] ;<[n—P—|—1] | ] d[n]
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RECURSION FOR FILTER COEFFICIENTS

RECURSIVE EXPRESSIONS FOR VARIABLES

xpd = | | am= | g B =] B O
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RECURSION (cont’d.)

TERMS IN WIENER-HOPF EQUATION

R[n] = X*[n]|B[n]X[n]
- *T Sk 5B[n T ]-] 0 X[n - 1]
= | X [’”’—1]"[””{0 1”>2T[n] ]
= BR[n — 1] + x*[n]x"[n]

r[n] = X*[n]B[n]d[n]

ﬁBM—l]O]{ﬂn—H]

= | X*[n - 1] i*[’”’]wo 1 || d[n]

= Pr[n — 1] +x*[n]d[n]
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RECURSION (cont’d.)

SHERMAN-MORRISON IDENTITY

A—lb C*TA—l
14+ c*TA-1p

(A_I_bC*T)—l — A—]. o

INVERSE CORRELATION MATRIX

(BR[n-1]) " x*[n]XT[n] (BR[n-1]) !
1 + X7 [n](BR[n—1]) = 1x*[n]

(R[n))™ = (BR[n—1]) ' -

= |I- (BR[n-1])"'%*[n] ,;gn) n—1])"1
B <I 1 + xT[n](BR[n—1]) —1x*[n] [n] | (BR[n—1])
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RECURSION (cont’d.)

INVERSE CORRELATION SIMPLIFIED
R™'[n] = 8~ (I - k[n]X"[n))R™ [n — 1]

where
B7IR1[n — 1]x*[n]
14 8~ 1xT[n]R~1[n — 1]x*[n]

k[n] =

It can further be shown that

k[n] = R~ [n]x*[n]
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RECURSION (cont’d.)
FILTER WEIGHT VECTOR

Substitute previous equations:
wln] = R7'[n]r[n] = R~ [n](Br[n — 1] + x*[n]d[n])
= BR™[n]r[n — 1] + k[n]d[n]
= B(8 A —-k[nIX )R [n — 1]) r[n — 1] + k([n]d[n]
= (I—k[n)x"[n])w[n — 1] 4+ k[n]d[n]
to obtain:

wln] = w[n — 1] + k[n] \(d n] — wln — 1]5&[72])/

e[n]
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RLS ALGORITHM

ESSENTIAL STEPS
BIRHn — 1]%*[n]

compute gain: k[n] = L1 8- 1% [nR-1[n — 1|2 [n]
compute prior error: e[n] = d[n] — wl[n — 1]x[n]
update weights: wln] = w[n — 1] 4+ k[n]e[n]

update inverse matrix: R 1[n] = 871 - k[n]|XT[n)DR"1[n — 1]
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FURTHER DISCUSSION OF RLS

e Additional parameters and interpretation

e \Weighted sum of squared errors

e Computational requirements

e Demonstration of performance
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RLS ALGORITHM (EXPANDED)

K[n] = B~IR"1[n— 1]%*[n] (a)
k] = 1/(1 + KT [nIx[n]) (b)
kin] = r[n]K[n] ()
eln] = dln] — wlln — 1]%[n] (d)
wln] = win - 1]+ k[n]e[n] (e)
R-I[n] = B 1R"I[n— 1] —k[n](K[])*T (f)

typical initialization: R~1[0] = %I, w[0] =0
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ERROR TERMS IN RLS

PRIOR ERROR

e[n] = d[n] — w![n — 1]X[n]

POSTERIOR ERROR
e[n] = d[n] — w'[n]x[n]

RELATION

e[n] = k[n]e[n] 0< k[n] <1

k[n] is called the conversion factor.
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GAIN TERMS IN RLS
WEIGHT UPDATE EQUATION (PRIOR FORM)

wn] = wn — 1] 4+ k[n]e[n]

WEIGHT UPDATE EQUATION (POSTERIOR FORM)

w[n] = w[n — 1] + K'[n]e[n]

RELATION BETWEEN GAIN TERMS

k[n] = k[n] X'[n] O0< k[n] <1
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WEIGHTED SUM OF SQUARES

UPDATE FORMULA

Sgln] = BSg[n — 1] + €*[n]e[n]
ALTERNATIVE FORMS

8Sgln — 1] + s[n]le[n]|*  (a)

Sg[n]

Sglnl] BSgln — 1] + |e[n]|?/x[n] (b)
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RLS ALGORITHM IN MATLAB

MAIN LOOP

for n=P:length(x)

xb=x(n-P+1:n); g=Rml*xb’;

gamma=1/(beta + xb*g);

k=gammaxg;

epr(n) = d(n) - xb*W(:,n-1);

W(:,n) = W(:,n-1) + kxepr(n);

Rml = (Rml - kxg’)/beta;

epo(n) = betaxgamma*epr (n) ;

S(n) = beta*xS(n-1) + epo(n)*conj(epr(n));

end
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